
Specification

Template system and implementation

specification for rendering gender-neutral email

templates with pronoun information

phseiff
from phseiff.com

v0.6.0

March 24, 2021

1

https://phseiff.com
https://github.com/phseiff/gender-render/#download-specifications--changelog

Contents

1 Abstract 3

2 Requirements 4

3 Design Decisions 4

4 Standard 5
4.1 Template Language . 5
4.2 Pronoun Description Data . 13
4.3 Pronoun Renderer . 16

4.3.1 gender*render Renderer specification 16
4.3.2 Implementation guidelines 22

5 Specification developement 31

6 Exemplary Implementation 32

7 Outlook 33

8 License 34

2

1 Abstract

Our society, as well as the way we perceive gender, are steadily evolving. This
evolution does not hold in light of technological questions, and it is our -the ”IT
people”’s duty- to address and do our best to solve the social issues that arise
from our technology. One such technology are email- and other text templates,
which are becoming increasingly popular to automate customer interactions of
any kind, be it in newsletters, notifications or program menus. Many such tem-
plates are gender-specific, in that they address the reader in a gendered fashion
(”Dear Mrs. Dursley, . . . ”). Such templates are relatively easily implemented
by providing two versions of the email, one for every binary gender. However,
some texts are far more complicated, because they address multiple people (each
with their own gender unknown at the time of writing), or people in the third
person (throwing their pronouns into the mix). In addition, an increasingly
height amount of people uses non-binary pronouns, or gender-neutral pronouns,
many of whom might not yet be discovered at the time of writing, which makes
these people marginalized when it comes to being correctly addressed even in
automated emails.

Similar issues exist in electronic entertainment industries, namely the com-
puter game industry. Many computer games, especially RPGs, allow players to
choose their gender, thereby altering the dialogues they receive from the game
in regards to pronouns and other grammatical implications of gender. Since
being inclusive towards different identities moves more and more into focus in
the industry, the need arises to allow players to choose from more than just
two genders, which, in its most inclusive form, requires players to be able to
customize their pronoun preferences in the character creation menu.

This creates the requirement for creating template systems for the english
language, and, in extension, any natural language (since all languages work dif-
ferently), that support writing complex texts in a gender-neutral fashion and
later ”render” them to correctly gendered texts, given the pronoun preferences
of every person they refer to.

gender*render is an attempt at creating one such template language, includ-
ing a Specification, to serve as a proof of concept as well as a starting point for
people who want to implement similar things. The vision behind this proof of
concept is not only to show how addressing people with unconventional preferred
pronouns can be automized, but also to show that it can be easily automized, to
debunk the myth that properly addressing non-binary people in an automated
fashion is simply technically impossible.

In essence, gender*render accepts a gender-neutral template for a text in
a specific syntax with special annotations on how to render it into a gender-
neutral version, as well as data describing the pronoun preferences of all people

3

it refers to, and returns a correctly gendered text from it; a task less trivial than
one might assume at first glance.

2 Requirements

There are multiple requirements for such a template language, whom I will list
here, including short explanation of why they are required wherever I deem it
necessary:

• The language must be easy to use even for less tech affine people. This
means that the atoms of the language, such as tags et cetera, must be
as short as possible, and should not clash with commonly used words or
signs, so the amount of escape characters the user needs to use is minimal.

• The language must support different scenarios:

– One person being addressed versus multiple people being addressed

– Only people mentioned in first person, only people mentioned in third
person, or a mixture of both

– Everyone using pronouns versus some people preferring not to use
any pronouns

• The fact that multiple scenarios are supported may not make using the
template language for only a subset of them more complicated that it
needs to be.

• Rendering templates may only require the information needed for render-
ing the template. For example, rendering a template that never addresses
anyone in the first person should not require providing information as to
whether the person goes by ”Mr”, ”Mrs” or any other form of address.
This is especially relevant since users do not want and should not need
to provide more information that necessary for rendering the templates,
especially considering the intimate nature of preferred pronouns.

• The syntax should be describable using a context-free grammar in con-
junctive normal form, which allows easy syntax checking and syntax high-
lighting.

• The data containing a persons preferred pronouns should be given in a
widely-used, standardized format, such as JSON.

3 Design Decisions

The following decisions where made based on the the technical requirements
ruled out in the corresponding section:

4

• The language uses a syntax similar to pythons build-in string formatting
syntax, using curly brackets to annotate gender-specific parts of a sen-
tence. Backslashes are used as escape characters for the rare occurrences
where curly brackets are actually needed.

• In addition to grammatical terms (e.g. ”possessive pronoun”), using the
gender-neutral form (e.g. ”their”) in tags is supported, potentially making
texts more fluid to write and easier to read in their un-rendered form.

• If tags contain IDs to annotate which person is referred to, a mapping of
IDs to pronoun preferences is accepted for rendering. If no such IDs are
added to the document because only one person of unknown gender is ad-
dressed in the document, the pronoun preferences are directly accepted by
the renderer, without having to be part of a person-to-pronoun-mapping.
This supports referring to multiple persons in one text without making
the writing of texts that refer to only one person any more troublesome.

• The pronoun information is given to the renderer as a piece of JSON data
(or a similar object if the language used by the implementation supports
such objects, e.g. dicts in Python, but strings of JSON data should always
be supported). Information that is not required by the template may be
left out in the template.

• Templates can be parsed before being rendered and then used for multiple
renderings. This should debunk the idea that gender-sensitive template
systems are to inefficient to use them.

These design decisions contain only those that are relevant to the require-
ments listet in the previous section; in-depth explanation and definition of the
way the template system works are given in the next section.

4 Standard

This section contains the actual standard. It is divided into three subsections;
one for defining the template language and how gender-neutral texts are de-
scribed with it, one for defining the data structure used to describe the pronoun
preferences of all people mentioned in a template, and one for guidelines and
specification on implementing a renderer for the template language.

The terms ”MUST”, ”MUST NOT”, ”SHOULD”, ”SHOULD NOT” and
”MAY” in this document are used as defined by the RFC 4627. Additionally,
the term *does* implies that it *must do*, not that it *can do*.

4.1 Template Language

Any text that follows the syntax of the following definition is considered a
valid gender*render -template. Any text that does not follow the following

5

https://tools.ietf.org/html/rfc2119

is not considered a valid gender*render -template. Files whose content is a
valid gender*render -template are referred to as files containing gender*render
-templates in the following section, and not as gender*render -templates on
their own. It is recommended to save such files with the file type .grt (short
for ”gender render template”).

The purpose of gender*render -templates is to write texts in a gender-
neutral way (at least in regards to some of the individuals they refer to), and
to be valid input for the gender*render -renderer, which is described in a later
section.

gender*render -templates may contain an arbitrary number (including zero)
of gender*render -tags. A gender*render -tag is defined a sequence of char-
acters that starts with an unescaped left curly bracket (”{”, U+007B) and ends
with an unescaped right curly bracket (”}”, U+007D) without containing any
unescaped curly brackets (U+007B as well as U+007D) in between. The purpose
of gender*render -tags is to describe gender-specific sentence components in a
gender-neutral fashion, these usually being mentions of a person in the third
person singular.

A character is considered escaped if it is proceeded by an unescaped back-
slash (”\”, U+005C) or by a backslash which is not proceeded by other backslash.
A backslash which is not escaped is called an escape-character. A template
which contains backslashes which are neither escaped nor escape characters is
not considered a valid gender*render -template, as is any template which con-
tains unescaped curly brackets who are not part of any valid gender*render
-tag. A template which ends with an escape character, which isn’t followed by
a character to escape, is also considered invalid.

Every character of a gender*render -tag except the first and last characters
(the brackets) is considered part of its content. Said content is divided into sec-
tions through unescaped asterisks (”*”, U+002A). A section of a gender*render
-tag does not contain any unescaped asterisks, and it must contain at least one
non-whitespace1 character. Colons (”:”, U+003A) are considered special char-
acters in sections, and may thus appear at most once per section, and neither
as the first nor as the last non-whitespace character of the section. If a section
contains a colon, the characters of the section beforehand the colon (minus all
leading or trailing whitespace) are called the sections type descriptor, and the
characters on the right side of the colon (minus all leading or trailing whites-
pace) are called the sections values, where every whitespace-separated word is
one value, with the order mattering. If a section does not contain a colon, all of
its content is considered part of its value-section. Whether a section type allows
multiple values or just one depends on the section type.

1”Whitespace” as defined by the HTML Living Standard.

6

https://infra.spec.whatwg.org/#ascii-whitespace

Colons proceeded by an escape character are not considered to be special
chars, and instead behave like any other character; analogously, escaped whites-
pace behaves like any other character and thereby indirectly enables the usage
of whitespace in section values as well as section types. Individual section values
as well as section types may therefore not contain whitespace, but may very well
contain escaped whitespace, which is then parsed into ”normal” whitespace by
the parser.

There are multiple different types of section, assigned to sections by their
type descriptor. A section whose type is ”foo” is called a ”foo-section”. Every
type of section has a unique priority, as a real number between 0 and 1000,
assigned by this specification. After parsing a tag, its right-most section with
no type descriptor and no assigned section type is automatically assigned the
section type with the highest priority of all section types that are not assigned
to any section of the tag (by this rule or a section type descriptor) yet; this
calculation is then repeated for every type-less section of the tag from right to
left. Every gender*render -tag must have at least one section, and may only
have one section of every type; this takes into account the assigned section type
of sections without a type descriptor. In addition, a tag may not contain more
sections than there are section types defined by the spec.

The most basic type of section is the context-type, which describes the
syntactic context (what grammatical case or attribute of a person it stands for)
of the gender*render -tag. Every gender*render -tag must have one context-
section.

There is an infinite amount of possible context values (values that a tag’s
context section may have), only a subset of whom is hard-coded into this speci-
fication (the other ones are evaluated and interpreted at runtime). These values
are referred to as specified context values. Some specified context values are
referred to as canonical context values, whilst the others are aliases of canonical
context values, which are interpreted identical to the canonical context value
they correspond to.
Whilst the canonical context value is usually the most descriptive of its aliases, it
is not necessarily recommended to actually use it in a gender*render -template.
Instead, every canonical context value has an alias referred to as its recom-
mended alias, which is the least descriptive of its aliases, but fits into the flow
of every text, as it imitates an exemplary gender-neutral version of the thing
the context value represents; e.g. rather than saying ”{subject} did all the hard
work {reflexive}”, one can say ”{they} did all the hard work {themself}” by
using the recommended aliases.
Some non-specified context values are regarded as canonical context values as
well, but (contrary to how specified context values behave), not every non-
specified context value that is also non-canonical is automatically an alias to a
canonical non-specified context values, since some are simply evaluated outside
the scheme of canonical context values and their aliases.

7

When applied to a tag (e.g. ”the tag’s canonical context value”), the canon-
ical context value refers to the canonical context value of which the context
value of the tag is an alias, or the context value of the tag itself, in case it is a
canonical context values.

Another important distinction to be made in regards to different types of
context values (this one important when it comes to actually rendering the tem-
plate) is between direct-mapped and non-direct-mapped context values. Tags
with direct-mapped context values are (usually) simply replaced with the cor-
responding attribute of the pronoun data of the person the tag corresponds
to 2 during rendering. For example, the tag ”context:foo” will be replaced
with the ”foo”-attribute of the pronoun data of the person that the tag corre-
sponds to, as will ”context:bar” if ”bar” is an alias for ”foo”, assuming ”foo”
is a direct-mapped context value. What tags with context values that are not
direct-mapped are rendered to, on the other hand, depends on logic that is exe-
cuted on rendering time based on the context value of the tag and pronoun data
of the individual the tag corresponds to. Note that there are some exceptions
to this rules; some context values that are referred to as direct mapped context
values still perform some additional tests before being rendered in the expected
direct-mapped way or behave different in some cases, such as the ”address”-
context value. The distinction between direct-mapped and non-direct-mappe
context value is ultimately made by the specification on an individual and con-
ceptual basis rather than strictly according to this rule of thumb.
Every specified context value from this main specification is direct-mapped
(though the oppositete does not apply), but please note that extension spec-
ifications 3 may specify specified context values that are not directly mapped.
It’s also worth noting that direct-mapped context value always fall into the
scheme of canonical context values and their aliases, though the opposite does
not necessarily apply to all extension specs.

Please note that the distinction between canonical context value, recom-
mended alias and other aliases is hardly relevant to the actual user, since all
they need to know is that there are multiple possible values for each grammati-
cal context; the reason why the concept of canonical context values (as opposed
to simply listing multiple coequal values for every context) is included in the
specification is that it is (a) useful for implementations, and (b) to conceptual-
ize this central design pattern of the gender*render template language, which
can be found everywhere throughout the specification. This can be analogously
applied to the concept of specified/ unspecified and direct-mapped/ not direct-
mapped context values.

The following table lists the possible values a context-section’s value may

2How tags correspond to individuals depends on their ”id”-value, which is explained in-
depth below.

3refer to the Specification Development section to learn about extension specifications.

8

have, as well as their meanings, though the syntactic validity of the template
does not depend on whether the values and types of the the gender*render -tags
are listed in this specification. For specified context values, the first value listed
for every context (bold) is the recommended one, whilst the last one (italic) is
the canonical one:

syntactic
context
indicated by
the value(s)

possible values,
synonymous to each
other

short explanation, where
necessary

Specified context values that refer to grammatical cases of pronouns:
Subject they, subj, subject
Object them, obj, object
Dependant
possessive
Determiner

their, dposs,
dpossessive

Independent
possessive
Determiner

theirs, iposs,
ipossessive

Reflexive themself, reflex,
reflexive

Specified context values that refer to non-grammatical attributes of a person:
Form of
Address

Mr s, Mr, Mrs,
address

Surname Doe, name,
family-name,
surname

(This is a reference to ”John
Doe”, a commonly used
placeholder for names.)

Personal name Joan, first-name,
personal-name

(This is, analogously to ”Doe”
for family names, a reference to
”John Doe”, but ”Jean” is
gender-neutral and thus makes
for a much better placeholder
than ”John”.)

Non-specified, yet direct-mapped context values:
Custom
property

”<” property ”>”
(Note that ”<” property ”>” is

considered its own canonical

context value, even though it

has no aliases.)

property can be any string
without whitespace, and refers
to a property of an individual
that is defined by its pronoun
data as a string, yet not part of
the spec.

Non-specified non-direct-mapped context values:

9

Gender-specific
Noun

any nominative,
with whitespaces
replaced by
underscores (” ”,
U+005F)
(note that custom properties

take precedence over

gender-specific words, so

context values only qualify as

this type of context value if

they don’t qualify as a

custom property.)

If the value of the section does
not match any of the above, its
content is understood as being
a noun which either server as a
substitution or as a description
of a person. For example, the
sentence ”{name} is an
{actor}” or ”the {actor} asked
for applause” would be good
candidates for using said type
of value since ”actor” has two
different gendered forms
(”actor” and ”actress”) in
english.

Table 1: Types of context values in tags

The priority of the context-section type is 1000. If the context-section of a
tag contains multiple values (e.g. ”{foo:bar * context:Mr s Doe}”), the tag
is interpreted as a sequence of multiple different tags separated by single spaces
(” ”, U+0020) that differ only in their context value and are identical to the
original tag in every other aspect (e.g. ”{foo:bar * context:Mr s} {foo:bar
* context:Doe}”).

Context values are always interpreted as being lower-case (all characters
with lower-case versions, at least), meaning no context value with upper-case
characters will ever be specified by the specification, and the rendering process
interprets every context value as if it was entirely lower-case (capitalized values
on the table above are capitalized merely for readability). This includes custom
properties (”<property>”) in gender*render -templates, which are interpreted
as their lower-case equivalent as well, in case they contain upper-case letters.
Should a context value in a template be capitalized, this capitalization is in-
terpreted as syntactic sugar to describe the tag’s capitalization-value (a type
of context section defined in the next paragraph) and the context value will be
converted to lower-case in the parsing process.

The second (and priority-lowest) section type supported by this version of
this Specification is the capitalization-type, whose priority is 800. The value
of the capitalization-section describes how the word(s) to which the tag
will be resolved will be capitalized, and may only take a limited set of values,
each of whom corresponds to a different type of capitalization. The potential
capitalization-values of a tag are listed in the following table:

10

value example
(foobar)

short explanation, where necessary

lower-case foobar

capitalized Foobar

all-caps FOOBAR

studly-caps FoObAr every second letter lower-case, all other upper-case.
alt-studly-caps fOoBaR like studly-caps, but reversed.

Table 2: Possible capitalization-values and their meaning

The example-column of the table above illustrates the capitalization that will
be applied to tags with the corresponding capitalization-value after they are
resolved. If a tag’s capitalization value is specified explicitly, whilst its context
value is not entirely lower-case, the gender*render -template is invalid; if, on
the other hand, the capitalization value is omitted, and the context value is
capitalized according to one of the examples of the table above (which is the
recommended way to specify a tag’s capitalization value), then the capitaliza-
tion value will be set to the corresponding value and the context value will
be converted to lower-case during parsing4. A tag ”{FoObAz}”, for example,
will become ”{capitalization:studly-caps*foobaz}” during parsing. This
modification is applied after the aforementioned splitting of tags with multi-
ple context values into series of tags, to allow a more fine-grained customiza-
tion of tag capitalization; therefore, ”{Foo bar}”, for example, will become
”{capitalization:capitalized*foo} {capitalization:lower-case*bar}”.
When determining whether a string follows a specific type of capitalization, char-
acters that are neither lowercase nor uppercase are interpreted as capitalized in
accordance with the capitalization type that is being checked for (an important
distinction because another way to implement this would be to skip the charac-
ter and proceed with the next character as if there had not been any character
in between); whether a character is uppercase, lowercase or neither is decided
in accordance to the Unicode Standard.
If a tag’s context value is capitalized in a different way than the ones listed in
the example-column of the table above, the gender*render -template is invalid;
please note, however, that this behavior might change in the future in any minor
release in case a fallback-value gets introduced and is therefore technically un-
defined, which implementation documentations should properly communicate
to the user5. Templates with tags with a capitalization value which differs from
all off the above-defined are invalid as well.
In cases where the capitalization of a tag’s context value is ambiguous (like ”Fo”,
which could be interpreted as both capitalized as well as studly-caps), the
topmost of both possible interpretations, according to the order of the table

4This uses the lower-casing algorithm described in section 3.13 of the Unicode Standard.
5See this comment on GitHub for discussion on this.

11

https://github.com/phseiff/gender-render/issues/2#issuecomment-798799367

above, takes precedence.

The third section type supported by this version of this Specification is the
id-type, whose priority is 950. id-sections may take any value, as long as
they take only one value, including (but not recommended to users for obvious
reasons) values that contain escaped whitespace. Said value describes which
individual the gender*render -tag refers to. Two gender*render -tags with
the same id-value therefore refer to the same individual. The id-value can be
omitted by the user if there is only one individual mentioned in the whole tem-
plate, and in some other cases; this is explored further in the renderer section.
Whether there is an id-section is not part of the template specification, since it
is not clear until the pronoun information is given.

Since there are only three section types defined by this specification, the
priority-highest of them being mandatory and the priority-lowest preferably be-
ing described using semantic sugar, there is no practical need to use any section
descriptors. They are still defined as a language feature in this template to pro-
vide a way to port the template language to other natural languages that might
require additional information without having to introduce new syntax elements
for every language. Please keep in mind that further extension specifications
will break backwards compatibility if they introduce section types with priority
values higher than the lowest pre-existing one, which is why priority values are
chosen relatively large and closely-spaced.
It is guaranteed that no section type with a priority higher than the priority of
the ”id” section type will ever be introduced, so templates can always omit the
section type descriptor for ”context”- and ”id”-sections, though omitting it for
any other sections is generally unwise unless you (as the writer of the template)
know that the set of extension specifications your implementation supports will
never change.

To end this section of the spec, here is a graphic of the gender*render -
template syntax described as a finite state machine (not taking into account the
fact that not every section type is valid, and the rules about assigned section
types and every type of section only existing once):

12

4.2 Pronoun Description Data

Pronouns description data, to which we will refer as gender*render -pronoun-
data for the rest of this essay to spare us some words, is the way the user tells
the render the pronouns of all people mentioned in a template so the renderer
can render it. Any piece of text that fits the criteria described below is consid-
ered gender*render -pronoun-data, yet not every such piece of text necessarily
works with every template, since it must provide the information required by
the template for the rendering to work. Files that contain gender*render -
pronoun-data should use the file extension .grpd.

gender*render -pronoun-data is a type of json data, which makes it easily
parsable by any language.

To describe a single individual’s pronouns (to whom we will refer to as indi-
vidual pronoun data), a json object is used; several of these are then combined
to provide pronoun data for all individuals. If a piece of individual pronoun data

13

is written into a file, the file extension .idpd should be used. Any json object
whose properties are strings without whitespace, and whose items are strings, is
syntactically valid individual pronoun data, though it might not be semantically
valid, and even if it is, it might not work with every template depending on the
information the template requires.

Analogously to what the concept of canonical context values and their aliases
is for context values, individual pronoun data differentiates between specified
properties (json properties for individual pronoun data that are hard-coded into
this specification) and non-specified properties (those who are not hardcoded
into the specification, yet are still valid). If, for example, ”foo” is an alias for
the attribute ”bar”, and a piece of individual pronoun data’s ”foo”-property has
the value ”foobar”, then this individual pronoun data’s ”bar”-attribute’s value
is ”foobar”. Every specified property is either an attribute, or an alias for an
attribute. The same goes for non-specified properties, contrarily to the behav-
ior of context values, where not every non-specified context value is necessarily
either canonical or an alias for a canonical one.

Every specified direct-mapped canonical context value is also a specified at-
tribute when used as a property in individual pronoun data, and every alias of a
specified direct-mapped canonical context value is also an alias for said attribute,
when used as a property. Additionally, for every non-specified direct-mapped
canonical context value (”custom property”) ”<property>”, ”<property>” is a
non-specified individual pronoun data attribute, whilst ”property” (assuming
it is not already a specified property) and ” property” (with an U+005F under-
score) are aliases of it.

When rendering a tag with a direct-mapped context value whose canonical
context value is ”foo”, the tag simply gets replaced with the value of the ”foo”-
attribute of the individual pronoun data of the individual the tag refers to with
its ”id”-value; this behavior is explained in-depth later in the rendering section
and subject to a view exceptions. A piece of individual pronoun data that lacks
an attribute required by a specific template for a tag that refers to said piece of
individual pronoun data is not valid for rendering this template.

Any piece of individual pronoun data that contains multiple properties that
are aliases of the same attribute is always invalid (attributes count as their own
aliases, for this purpose).

When it comes to describing individual pronoun data as the end user of a
gender*render implementation, the recommendation is to use the attribute value
itself, since it is the most descriptive of its aliases. If this is not an option for
whatever reason, users can use the alias that doubles as the recommended alias
of the corresponding context value (with the advantage of making the mapping
between template and individual pronoun data more comprehensible), ore one
of the other aliases, which are usually more descriptive whilst still being shorter

14

than the full attribute.

The following table gives you an overview over all attributes and properties
that are not derived from direct-mapped context values according to the rules
described above; the attribute in every list of properties is highlighted in italics.
If one of these properties with a limited set of potential values has a value that
is not allowed, the template is invalid.

information
provided by
attribute

attribute name and
property name(s)

short explanation, where
necessary

Gender-specific
addressing

gender-addressing If set to ”false” or ”f”, the first
name of an individual is used
instead of its addressing; the
only other valid values are
”true” or ”t”. Defaults to true.

Gender-specific
Noun handling

gender-nouns Describes whether the person
wants gender-specific nouns to
use the female version where
possible (e.g. ”actress” instead
of ”actor”), the male version
where possible (e.g. ”fireman”
instead of ”firefighter”), or the
gender-neutral version where
possible (e.g. ”firefighter”).
Possible values for this property
are "female", "male" and
"neutral". Defaults to neutral.

Table 3: Supported properties in individual pronoun data

gender*render -pronoun-data is simply a json object whose properties are ids
(strings without whitespace) corresponding to ids of gender*render -tags, and
whose items are the individual pronoun data corresponding to their respective
ids. Since the ids used by the gender*render -pronoun-data need to correspond
to those used by the template, not every valid piece of gender*render -pronoun-
data worked with every template. As specified later in the spec, renderers accept
gender*render -pronoun-data as well as individual pronoun data in cases where
no or only one id is used.

15

4.3 Pronoun Renderer

This section describes the way gender*render -specification conforming pronoun
renderers work. It is divided into two subsections, one defining a gender*render
-renderer, and one defining (additional) implementation guidelines that should
be followed to ensure that all renderers use similar interfaces and users under-
stand the renderer even if they used to work with a different implementation
beforehand. The gender*render implementation that comes with this specifica-
tion (https://github.com/phseiff/gender-render) also follows all of these
guidelines.

4.3.1 gender*render Renderer specification

Any program that follows the specifications below is considered a gender*render
-renderer. The purpose of such programs is to take gender*render -templates
and gender*render -pronoun data and render them to texts that are gendered
correctly according to the preferences voiced in the pronoun data. We will refer
to gender*render -renderers simply as renderers for the rest of this section to
aid the reading flow. An implementation that follows not only the main spec-
ification (this one), but also all extension specifications 6 may call itself a full
gender*render implementation, or an extended gender*render implementation.

A renderer must take at least two inputs, a gender*render -template and
a piece of pronoun data. As for the piece of pronoun data a renderer accepts,
every renderer must accept gender*render -pronoun data as well as individual
pronoun data, which is then processed into full gender*render -pronoun data
following a number of steps explained below. The renderer may also be written
in a way that allows to pass it a path to a .gr-file containing a gender*render
-template instead of the template directly, or even in a way which exclusively
allows this way of usage, though the later is not recommended and does not
comply with the implementation suggestions given by this document. Analo-
gously, the renderer may be written in a way that allows to pass it a path to a
.grpd-file containing gender*render -pronoun data or a path to a .gripd-file
containing individual pronoun data instead of the content of the gender*render
-pronoun data directly, or even in a way which exclusively allows this way of
usage, though the later is not recommended and does not comply with the im-
plementation suggestions given by this document.

Along the rendering process, several errors might occur for several reasons.
The way errors are classified and communicated to the user is not an implemen-
tation detail, but a part of the specification, since classifying errors is especially
important due the logical, yet sometimes contra intuitive way gender*render
renders templates. This specification thus defines not only what should raise an
error, but also suggests different error names for different types of errors.

6refer to the Specification Development section to learn about extension specifications.

16

https://github.com/phseiff/gender-render

If the language of the implementation allows defining and raising custom
error types, these error types must be defined and risen accordingly. If the
language does not allow to define custom error types, yet allows to return in-
formation even if the execution of a program or function fails, the program
or function must return information indicating what type of error occurred in
a reasonable way. However, if the language of the implementation provides a
standardized way to indicate a function failed to run, yet does not provide a
way to return additional information about the cause of this failure, the imple-
mentation should use the standardized way of failing if an error occurs instead
of returning information about the cause of failure.

The following types of errors are defined by this specification, and are used
as described below. Please note that whilst the names of the errors are always
written in camel case throughout this specification, the way they are written
should be according to the official style guide of the language they are imple-
mented in, if there is any. If the naming conventions of the language comply
with the names of the errors defined in this specification, or if the language does
not have any naming conventions, the names defined in this specification must
be used.

Error name commonly used for

SyntaxError Used if the input is not a valid template
and pronoun data aren’t valid, independent
of the way they relate to each other.

InvalidCapitalization-

Error

Used if the capitalization of a context value
or the capitalization value of a tag are
invalid.

InvalidPDError Used if the given pronoun data is not valid.
IdResolutionError Used if matching individual pronoun data

to tags does not wo out.
MissingInformationError Used if the individual pronoun data a tag

refers to does not contain the information
the tag requires.

DoubledInformationError Used if individual pronoun data defines a
property multiple times with different
names (possible since gender*render
defines multiple different names for each
property).

InvalidInformationError Used if a property in a piece of individual
pronoun data has a value it does not allow
assigned.

Table 4: Types of errors that can occur whilst rendering

17

If the language of the implementation already has an error type of the name
SyntaxError, and this error can be raised by the implementation manually,
the implementation does not need to define a custom equivalent of this error
type in their own namespace, and may instead use the pre-defined type. This
is applicable for some languages like Python, and you can safely ignore it if it
isn’t applicable to your language of choice.
The errors (in languages where errors are objects) do not need to be defined as
part of the global scope, if libraries or modules in this language commonly use
their own scope (as is the case wit most common languages), and should default
to the best practices for their respective language.
If the language is object-oriented, including custom errors, the errors defined by
this specification may be derived from pre-existing error types, where fitting, as
long as catching the exception based on the name defined by this specification
is still possible.
Implementations in languages that support error hierarchies with the ability to
find out whether a caught exception has been raised specifically, as opposed to
being triggered by raising one of its derivates, may implement an arbitrary (as
long as it is well-defined in their documentation) error hierarchy between its
exceptions, based on good judgement7.
Where possible, additional information regarding the cause of failure and how
to fix it should be included when raising an error, but the way this is done
is considered an implementation detail. Implementations should keep in mind
that people using gender*render might not necessarily have read the spec, and
might profit from self-explanatory detailed Tracebacks.

The rendering p-rocess uses different steps, described as follows. Please note
that the order in which these steps are executed is not relevant; as long as the
renderer is guaranteed to produce the same input-output-pairs as any render
that accords to this definition does, it is up to the programmer how the ren-
derer works internally. Each of these steps vaguely corresponds to one of the
error types defined above, and raises almost exclusively said error if it happens
to be unfinisheable.

The first step is parsing the input values (template and pronoun data) and
checking them for correctness. If the received template is not a valid gen-
der*render -template, a SyntaxError is risen; unless the issue is with the cap-
italization settings of a tag, in which case a InvalidCapitalizationError is
raised according to the table above. If, on the other hand, the received pronoun
data is neither valid gender*render -pronoun data nor individual pronoun data,
an InvalidPDError is risen; this takes precedence over raising a SyntaxError

in case both the template as well as the pronoun data are invalid. Please note
that for a gender*render -template to be valid, not only does the syntax as
describes via a formal grammar or a finite state machine be matched, but also
does the determination of non-explicitly specified section types need work out,

7Refer to the Error Hierarchy section for additional recommendations.

18

as described in the template-part of this specification.

This step also contains unwrapping tags with multiple whitespace-separated
context values, such as ”{foo:bar * context:Mr s Doe}”, which are processed
from a form along the lines of ”{foo:bar * context:Mr s} {foo:bar * context:Doe}”
to two different tags separated by a single space (” ”, U+0020). If a tags context
value is not supported, an error may be risen, but this may differ from imple-
mentation to implementation to ensure backwards compatibility with versions
that support a smaller set of context values.

After tags with multiple context values are split into sequences of multiple
tags with one context value each, their capitalization value and their context
value’s capitalization are parsed and checked, taking into account the semantic
sugar and other rules defined in regards to the capitalization-section (refer
to the Template Language section for additional detail).

The second step matches gender*render -tags to individual pronoun data
passed to the renderer. The crux of this is checking whether all ids used by
the pronoun data match ids used by the template and vice versa, and making
sense of individual pronoun data passed to the renderer. This step as well as
the next one check not only whether the passed information are valid each on
their own, but also whether they are matching. The procedures defined during
this part of the specification walk a thin, yet clear, line between being too static
and therefore forcing the user to provide not required information and reduce
the ease of use of gender*render , and being to lash and therefore making de-
bugging unnecessarily difficult. Understanding this part of the specification is
crucial for using gender*render , and the information it gives should therefore
be part of communicating the way gender*render can be used by implementa-
tion documentations.

The first part of this step is to deal with the fact that different amounts of id
values can be used by different tags, and some tags don’t have id values specified,
and the given pronoun data might be individual pronoun data and therefore
not specify any id values. To resolve this issue, the renderer assigns every
gender*render -tag an id value if it doesn’t have one already, and converts the
given pronoun data to gender*render -pronoun data if it is individual pronoun
data. The way this is done is described by the following table, which refers to
the amount of id values specified by all gender*render -tags used in the given
template as #ids:

#ids = 0 all tags have
the same id
(=”bar”)
assigned

all tags have ids
assigned, but
not all the same

some tags have
ids assigned,
some not

19

only
individual
pronoun
data is
given
(=idpd)

set
pronoun data =

{"usr": idpd};

Assign id ”usr” to
every tag.

set
pronoun data =

{"bar": idpd}

raise
IdResolutionError

raise
IdResolutionError

pronoun
data is
given for
one id
(=”foo”)

Assign id ”foo” to
every tag.

if ”foo” 6= ”bar”:
raise
IdResolutionError

raise
IdResolutionError

raise
IdResolutionError

pronoun
data is
given for
n (≥ 1)
ids

raise
IdResolutionError

if ”bar” is not an
id in the pronoun
data:

raise
IdResolutionError

nothing to do here if #ids + 1 6= n:
raise
IdResolutionError
else:
assign every tag
without an id the
id in the pronoun
data that isn’t
assigned to any
tag.

Table 5: Id resolution

After the instructions in this table are followed, every gender*render -tag
in the template will have an id, and the given pronoun data will be converte
to actual gender*render -pronoun information instead of potentially being in-
dividual pronoun data. The only thing left to do in this step is recreating the
set of ids used by the template and the set of ids used by the pronoun data and
raising an IdResolutionError if the ids in the template are not a subset of the
ids in the pronoun data.

The third step does for the context-value of the tags what the second does for
the id-value of the tags. It corresponds to the Missing-/DoubledInformation-
error like the second step corresponds to the the IdResolutionError. This task
is also finally the one that involves actually rendering the template.

Fist, the all individual pronoun data needs to be checked for doubled infor-
mation. If any individual pronoun data uses multiple different property names
to refer to one attribute, a DoubledInformationError is raised; see table 1 and
2 for information about which properties refer to which attribute.

Then, the renderer iterates over all tags in the template, and for each tag,
the tags context value and the individual pronoun data provided for the tags id

20

value is taken, processed according to the following table, and the result then
replaces the tag in the actual template. If an attribute is required for this yet
not defined in the individual pronoun data, a MissingInformationError must
be risen risen. Note that we will refer to attributes of the individual pronoun
data simply as ”attributes” in the following:

syntactic context
of the
gender*render
-tag

procedure

Every
direct-mapped
context value
with canonical foo
except address and its

aliases

The tag is replaced with the value of the foo-attribute.

Form of Address
(context value
with canonical
address)

If the gender-addressing-attribute is set to false (or
undefined), the tag is replaced with the value of the
personal-name-attribute.
Otherwise, it is handled like any other direct-mapped context
value (see above).

Gender-specific
Noun

See below.

Table 6: Rendering procedures for each syntactic context

As we can see, the only non-trivial case is correctly gendering gender-specific
nouns, these being nouns that imply a specific natural gender of the person they
refer to, or hyponyms for ”person”, to be precise. Depending on the value of the
Gender-specific Noun handling attribute, such nouns, when given as the con-
text value of a gender*render -tag, will be replaced by their correct equivalent
for the specified gender. How these equivalents are determined is intentionally
left vague since the english language is constantly shifting and unambigiously
defining every rule for this would require to curate extensive lists. However, the
recommended approach would be to use a graph of nouns that links every noun
that refers to a person (for example based on WordNet8) to their synonyms
according the gender implied by the synonyms. There are (not necessarily com-
plete) datasets available9 that do exactly this. It might be a good idea to test
these sets on whether they contain a gender-neutral version for every gendered

8Princeton University ”About WordNet.” WordNet. Princeton University. 2010.
9for example https://github.com/ecmonsen/gendered_words on GitHub, which is an ex-

tension of the wordnet dataset, and is in turn extended by the data used by our reference
implementation.

21

https://wordnet.princeton.edu/
https://github.com/ecmonsen/gendered_words

noun, and if they have only a version ending with ”-man” and one version end-
ing with ”-women”, to manually insert a version ending with ”person”.10

If a word is given as a gendered noun which isn’t one according to the used
data set, no error must be risen to ensure that every implementation termi-
nates successfully for the same input data, but a (possibly suppressible) warning
should be risen. If the implementation is also capable of determining if some-
thing is a word for a person a noun or a word at all, it may raise warnings for
these as well.

After the string value a tag will be rendered to is determined, the capitaliza-
tion option of the tag described by its capitalization-value is applied to said
value by capitalizing it according to the capitalization-example provided in the
capitalization value table above. If a character does not have both a lowercase-
and an uppercase-version, it is interpreted as already capitalized correctly by
this process (an important distinction because another way to implement this
would be to skip the character and proceed with the next character as if there
had not been any character in between). The whole process leading up to this,
from the parsing of the template’s context values and their semantic sugar to
the capitalization of the final tag replacement, is referred to as the global cap-
italization system (”global” because it is indiscriminately applied to every tag
at the end of its rendering process), a word which can be found all throughout
the reference implementation.

After all of these steps are concluded, every gender*render -tag in the tem-
plate will be replaced with a correctly gendered and correctly capitalized word
for it. Afterwards, the rest of the template (save for the rendered tags) must
be unescaped to remove single backslashes and replace double backslashes with
single ones. If the implementation does not operate on a mutable string object
(like they exist in some languages), the result should then be returned or out-
putted in another way, though this is not a must since some implications might
not be encapsulated into their own function or program.

4.3.2 Implementation guidelines

In addition to the ”must”s defined above, this sections lists some additional
”should”s and guidelines for implementing gender*render renderers. This com-
pleted the previous section in that the previous section is about the way gen-
der*render -implementations must work internally, whilst this section is about
the way gender*render -implementation interfaces should be exposed to the
outside, to encourage uniformity not only on the inside, but also on the outside.
Renderers that follow all of these ”should”s can call themselves conforming to
the gender*render implementation standard (or, if they only follow the imple-

10This is what our reference implementation did with the data we used.

22

mentation standard for some of the extension specifications11 they implement,
specifically conforming to the implementation standards of the specifications
whose implementation standards they follow).

In general, the purpose of this implementation standard is to define stan-
dardized interfaces and behaviors (function names, parameter names, additional
behaviors and parameters, optional optimizations, test functions for the user to
find potential caveats in their templates etc.) so that every user who is com-
fortable with one implementation of gender*render is capable of using any
implementation in any other language without having to refer to the documen-
tation to get started. It is acceptable that not every implementaon might be
able to follow these guidelines, though, and they are admittedly optimized for
object-oriented languages, though they also contains alternate suggestions for
non-object oriented languages.

In addition to being a guideline for other implementations, this standard
served as a basic outline for writing the exemplary implementation that comes
with this specification. Whilst said implementation strictly follows all of these
guidelines, it should be mentioned that was written after the standard, so these
guidelines are in no way based on the original implementation or, even worse,
written to justify this implementations design choices.

The terms ”suggestions” and ”guidelines” are used interchangeably here.

4.3.2.1 Naming Guidelines

All naming suggestions given in this section follow Python coding conventions,
these being CamelCase for classes, snake case for variables, functions, argu-
ments and methods, and kebab-case for package names. Whilst the names are
part of these suggestions, their case is not, and every implementation should
follow the naming conventions of its respective language depending on the type
of things the names refer to.

4.3.2.2 Object Orientation

The guidelines are mainly targeted towards object-oriented languages, since
most high-level languages are object oriented and there is not much reason
to implement gender*render using a low-level language. However, they can
and should be applied to non-object oriented languages as well, following the
following table of analogies; in cases where the left-sided concept is available for
use, it should be used, otherwise, the right-sided concept should replace it:

object-oriented
term

not object-oriented equivalent

11refer to the Specification Development section to learn about extension specifications.

23

object
representing a foo

data structure representing a foo

class constructor function that returns the data structure that compensates for
the object

method of an
object
representing a
foo;
takes e.g. a, b, c
as arguments

function that manipulates a data structure representing a foo or
returns a manipulated version of it (depending on whether it is
mutable or not);
takes e.g. the data structure, a, b, c as arguments

function that
mutates foo

function that returns a modified copy of foo

function f,
which accepts
some optional
arguments

function f ext where all those optional arguments are required,
and function f, which does not require the optional arguments
and internally calls f ext with the default values for the
omitted arguments;
unless there is a standard way to deal with issues like this in
the given language, which should then be preferred to this
approach.

boolean type 0 or 1 as integers

Table 7: OOP equivalents for low-level languages

4.3.2.3 Naming the package

Packages (as in, modules or libraries that can be installed via a package man-
ager, be it language specific or general) should be called ”gender-render”
if they target the english language. If they target a different language, they
should be extended with a hyphen and the corresponding language code (e.g.
”gender-render-de”). In case the implementation is highly language specific
(e.g. intended to be used from within one specific language rather than as
a tool via the command line), and the package manager it is uploaded to is
not language-specific (unlike e.g. nvm or pypi), the package name should be
extended with a hyphen and the common file extension of the language (e.g.
”gender-render-js” or ”gender-render-de-js”). In cases where other pack-
ages of the same name already exist, a name should be chosen with good judge-
ment.

4.3.2.4 Naming the module/ library

Most languages support writing modules and libraries that can be imported,
embedded or otherwise injected into any piece of code usg a simple state-
ment that contains the name of the module somewhere in it (e.g. ”import

24

gender-render” or ”#include <gender render>”). Whilst some languages
come with their own packet manager, some don’t, and some that do support
using different names for the package and the module that it installs. Therefore,
a separate naming convention for module names is necessary.

Module names are formed like package names, except without the appendix
for the language name, and using the case conventions for module names rather
than package names. In cases where the package name differs from the scheme
above, the module name should be based on the package name, but also without
the additional information regarding the implementation language.

4.3.2.5 Core functionality

This is the functionality that every gender*render implementation should ex-
pose, if appropriate (within good judgement) its main namespace.

class Template: A class representing a parsed, but not yet rendered, gen-
der*render -template. Its constructor takes the template-related informa-
tion that any gender*render -renderer takes, parses and processes it as
far as possible, and an additional render-method accepts the pronoun-
related information that any gender*render -renderer takes and renders
both, with the result then being returned. This practice of implementing
an object or data structure just for processing the template and separating
this process from the actual render is motivated by the need for increased
performance in case of multiple subsequent renders of one identical tem-
plate.
The constructor accepts one positional argument, ”template”, which ac-
cepts a string, and one optional argument ”takes file path”, which de-
faults to false and accepts a boolean. If takes file path is true, the
template-argument is interpreted as a file path to a .gr-file containing the
template; otherwise, it is interpreted as a string containing the template.

method render(): A method of the aforementioned Template-object. It ac-
cepts a piece of pronoun data and returns the rendered template. Ac-
cepted arguments are ”pronoun data”, which accepts a string, and one
optional argument ”takes file path”, which defaults to false and accepts
a boolean. If takes file path is true, the pronoun data-argument is
interpreted as a file path to a .grpd- or .gripd-file containing the pronoun
data; otherwise, it is interpreted as a string containing the pronoun data.
Implementations may write render as a method that accepts a JSON-like
object (like a dict in Python or an object in Javascript) if it receives one
instead of a string containing json.

function render template(): render template() is a shorthand for Template().render().
Order in which arguments are passed to render plate() is first required
arguments for Template(), then required arguments for render(), then

25

optional arguments shared by Template(), then optional arguments for
Template() and then optional arguments for render().

class PronounData: A class representing a parsed piece of individual pronoun
data, with all calculations that can be done before knowing which template
it will be inserted in already done. This type of object is accepted by every
function which accepts pronoun data, such as Template().render() or
render template() wherever these functions accept a piece of pronoun
data (the pronoun data-argument). Its constructor accepts the same
arguments as the render()-method as described in the preceding sections
of this list.

4.3.2.6 Warnings

As in every program, there are multiple scenarios that can arise along the ren-
der process that might warrant raising a warning. This specification does not
define any warnings that must be risen to comply with these standards; rather,
it suggests some warnings that should be implemented if the architecture of the
program warrants it, was well as guidelines on how to handle the disabling and
enabling of warnings.

Every warning suggested by this section comes with a name that should, like
every other name specified here, adjusted to the styleguides of the implementa-
tion language. All of the names of these warnings end on ”Warning” as a uniting
factor in their names, but this uniting factor should be left out or replaced ac-
cording to the coding guidelines of the respective language. If, for example, the
suggested name is ”FooBarWarning”, but the language and/or coding guidelines
used for the implementation require warnings to be snake case and to start with
”potential problemr̈ather than ending with ”Warning”, the warning should be
”potential problem foo bar”.

Which function should raise the warning is implementation dependent; how-
ever, every function suggested by this specification should have an warning settings-
argument which takes a value defining which warnings should be enabled and
which warnings should be enabled for the run. The syntax and type of this
warning is up to the implementation; however, it should allow to individually
enable and disable every warning, and there should be constant values for setting
all warnings as enabled/ all warnings as disabled defined. If the implementation
of this feature is string-based, e.g. the warning settings get passed as an array
of strings describing warning types, the string names representing the warn-
ings should be interpreted according to this specification and in snake case, so
”FooBarWarning” would be represented by ”foo bar warning”. This ensures
compatibility of values for the warning settings-argument across all imple-
mentations of gender*render . The default value for the warning settings

argument is up to the implementation, but should be chosen to comply with
the warning sensitivity common in programs written in the respective language.

26

The value of the argument should be passed from every function to every func-
tion it calls (assuming both functions are part of the program and have poten-
tial warnings to raise). render template(), for example, should pass the user’s
warning preferences on to Template() as well as its .render() method.

warning name warning meaning

NotAWordWarning The value of a Gendered Noun-tag is not a word known in the
english (or implementation-specific) language. Raising this
warning only makes sense for implementations that come with a
full dict of the english language.

NotANounWarning The same as above, but specifically for valid words that are not
nouns.

NotAPersonNoun-

Warning

The same as above, but specifically for valid nouns that do not
refer to a type of person or profession and are thus not
gendered in any way.

FreeUngendered-

PersonNoun-

Warning

A noun that refers to a type of person or profession was found
outside of any tag.

FreeGendered-

PersonNoun-

Warning

The same as above, but specifically for nouns for whom more
than a single, gender-neutral form exists.

UnknownProperty-

Warning

A custom property in a piece of individual pronoun data is not
using the special syntax for custom properties
(” property name” or ”<property name>” rather than just
”property name”). Using the special syntax is preferable to
ensure that the custom property is not named equal to a
property introduced in a later version or addition to this
specification.

FreePronoun-

Warning

A (non-neo) pronoun is found freely outside any gender*render
-tag.

UnexpectedFile-

FormatWarning

A file name specified to Template() or Template().render() does
not follow the file extension naming convention of this
specification.

IdMatching-

NecessaryWarning

The set of ids specified in the given pronoun data was not equal
to the set of ids used in the given template, but could still be
matched. Since this might happen on accident, a warning
should be present.

Table 8: Potential Warnings

Not all of these warnings need to be implemented, and an arbitrary amount
of additional warnings may be implemented in addition to them. Warnings

27

should come with the information required to track them down to their cause
(the rerence implementation might set a good example here).

The recommended approach to warnings about the presence of ungendered
words of any form (these warnings all start with ”FreeUngendered” in the table
above) would be to split the text surrounding tags into words, with non-letter
symbols serving as separators, and checking every word for presence in a ded-
icated list or other data structure of gendered words. Since not all letters are
part of ASCII code, checking whether a character is part of the alphabet is
not enough to check whether it is a letter in many languages; implementations
should instead check whether a character is a ”Letter” according to the Uni-
code standard to determine whether it is part of a word or a separator between
words12.

In addition to the warnings defined by this section of the specification, im-
plementations may implement an arbitrary amount of additional warnings to
give even more fine-grained feedback during the parsing and rendering process.
These additional warnings can be disabled by default or enabled by default,
depending on design decisions made by the implementation; the ability to sup-
press warnings that comes with gender*render makes both decisions valid.

The following is a list of all additional warnings the gender*render refer-
ence implementation uses (or used in previous versions) in addition to the ones
specified above; they where never part of the specification, though, since their
usefulness can be debated and/or is highly language dependant. The reason
why there is still a section in this specification for them is because it might be
of interest for other implementations to see which additional warnings where
implemented in the reference implementation and why (if ever) they where re-
moved:

warning name warning meaning
(slightly modified from the
docstring)

reason for removal

12Compare to how the str.isalpha()-method works in the Python programming language,
for example.

28

DefaultValue-

UsedWarning

An attribute with a default
value was looked up in a piece
of individual pronoun data, but
not found, so its default value
was used. This is in itself not a
problem and perfectly fine
behavior; this warning is only
raised to inform the user in case
they forgot to define the
property or pythonically prefer
explicit to implicit.

N/A

GenderedNouns-

BuildFromWeb-

Warning

The data containing the
gendered and especially neutral
versions of all english
hyponyms for ”person” could
not be found; therefore, it will
be downloaded and saved from
the internet. This should only
happen once per installation
and only when initializing the
module for the first time, and it
should not happen at all with
the PyPi installation.

N/A

NounGendering-

GuessingsWarning

Raised if a noun will be
gendered, but based on
automated guesses at the
correctly gendered version of
the noun rather than
hardcoded values. This warning
exists because the data used by
the implementation to find the
correctly gendered version of
every word had holes, missing
information and contradictions
in the hundreds, all of whom
where fixed by an algorithm
and not yet manually checked
for correctness.

N/A

Table 9: Additional Warnings in the reference implementation, and why they
where removed

29

4.3.2.7 Error Hierarchy

Some languages (mainly object-oriented languages such as Python and Java)
have error hierarchies, where Error- and Exceptions Types can have sub-types,
and catching an Exception catches all of its sub-exceptions as well (usually, that
means that Errors and Exceptions are implemented as classes that just inherit
from each other). For this reason, implementations in such languages (like the
reference implementation) might want to define hierarchies between the gen-
der*render exceptions they define. This is in accordance to this specification,
which does not forbid such behavior. Implementations may also add additional
exceptions into their error hierarchies, and decide freely from which pre-existing
exception they derive the exceptions defined by this specification; the only lim-
itation is that catching an exception defined by this specification must always
catch every issue that, as fined by this specification, raises said exception.

Some languages might not allow to check whether a caught exception is
exactly the exception one tried to catch or an exception derived from this
exception (so catching exception A does not allow one to determine whether
exception A was risen or exception B when B is derived from A). Implemen-
tations in languages like this may not derive exceptions defined by this speci-
fication from other exceptions defined by this specification, since e.g. deriving
DoubledInformationError from InvalidPDError in such a language would
make it impossible to specifically catch InvalidPDError.

The following graphic shows the (exemplary) error hierarchy used by the
reference implementation, which might serve as a good example. Arrows go
from parent exception to child exception, and exceptions in dashed lines are ex-
ceptions that the implementation added on top of the set of specified exceptions
to allow for even more fine-grained error handling. Ultimately, the hierarchy
between different exceptions is opinionated and the ideal error hierarchy might
vary depending on the application area and language of the implementation,
but the following hierarchy might still be of worth and work quite well for many
implementations that qualify for using an error hierarchy:

30

5 Specification developement

This section lays out some details of the way this extension is versioned and
may be extended or developed in the future.

As it is now, this specification is nowhere near its full potential, yet it is us-
able and quite enough to be a valid proof of concept. I consider it to be enough
to publish and share, but there will be imperfections or maybe even straight
out design faults. Thus, issues and suggestions are very welcome in the GitHub
repository where this specification is developed13.

Future development will go two paths in parallel: One path is the steady
improvements of this specification in wording as well, if necessary, content. The
other path is releasing extension specifications, these being additional specifica-
tions that introduce new rendering steps and attributes as well as further imple-
mentation suggestions to enhance gender*render implementations with useful
extra functions. The extension specifications will not extend the specification
in that every implementation must follow each extension spec to be considered
compliant with the main specification, but rather in that every implementation
must follow the ”must”s defined by this specification and may follow an arbi-
trary amount of additional extension specifications. An implementation that
follows extension specs Foo and Bar in addition to the main spec is therefore

13https://github.com/phseiff/gender-render/issues

31

https://github.com/phseiff/gender-render/issues

not more compliant with the main spec than any other implementation, but it
can say of itself that it implements extension specs foo and bar in addition to
the main spec, like a program coming with an add-on pre-installed; additional
definitions on how to determine whether an implementation follows this stan-
dard or not can be found at the beginning of both subsections of the Pronoun
Renderer section of this specification. The idea behind this is to be able to
rapidly introduce new features without every implementation constantly having
to adapt to these new features to ensure it doesn’t become obsolete, and to
allow a more organic development of gender*render driven by public response
to its components rather than one person scribbling down their visions into a
spec that becomes more and more bloated in the process.

In general, the amount of work and time I plan to put into maintenance and
extension of this specification largely depends on the amount of reception it re-
ceives; however, issues will definitely be addressed as in any maintained project.
Please also note that this specification is developed in the same repository as
the exemplary implementation it comes with; but that its development does not
depend on said implementation.

This specification uses a variation of semantic versioning, in which the ma-
jor version increases through each backwards-incompatible change as per usual
(this will, however, not happen once the project enters a staple state or after it
establishes itself, if it does), the minor version with each feature added (which
should usually be done via extension specs, though it might be necessary to
merge extension specs into the main spec if it turns out to lack required func-
tionality) and the ”bugfix” version with every change that does not affect its
content, but its content’s wording.

The current versions major number is 0, since there might be need changes
according to the feedback it receives. For as long as the major number remains
zero and no notable adaption of the standard can be seen, minor breaking
changes may occur without increasing the major version number.

Recent versions as well as their changelog will always be accessible via the
specification download page of the project’s GitHub repository14, which is al-
ways where the latest version, future versions and extension specifications are
and will be located.

6 Exemplary Implementation

To illustrate the specification and approach it in a practical way as (1) the
practical side of this proof of concept and (2) to ensure that there is a useful

14https://github.com/phseiff/gender-render/#download-specifications--changelog

32

https://github.com/phseiff/gender-render/#download-specifications--changelog

implementation that makes the spec reality, the specification comes with an
exemplary implementation written in Python. This implementation is written
according to the specification, not the other way around, not even chronologi-
cally. The example implementation also follows and demonstrates all the inter-
face and implementation suggestions of this specification, and is well-equipped
with automated testing.

Its documentation as well as installation instructions can be found in the
GitHub repository of this project.

7 Outlook

As our world as well as our perspective on society and gender evolves, queer
identities and people who openly identify as non-binary genders will become
far more common occurrence than they already are. As non-binary people will
become less and less ignorable in politics, their ignorability in technology will
decrease as well, and it is part of our responsibility as developers to not fail
in following these social developments and overcome technical challenges they
bring with them like any social development does. Developers and technicians
have overcome an incredible amount of challenges and technical limitations in
and of the past three decades, many of whom where caused by real-live devel-
opments and the natural striving of humans for self-fulfillment. It would be a
disgrace to IT if we failed to keep up with social developments and proactively
slowed them down for technical pretexts, and IT refusing to find solutions for
correctly gendering every person in every automated text because of technologi-
cal pretexts really puts a bad light on us; after all, our profession was involved in
getting humans to the moon before we even knew we’d ever send an automated
email, so how can we fail at making people feel accepted when we made people
literally reach for the stars?

This projects goal is by no means to create the one only true way of au-
tomated email gendering, but rather to address an issue and demonstrate that
solving it would not require sorcery. There will probably be a lot of projects,
programs and specification to address the issue of correct automated gendering
in the future, and I do not expect this specification to still be around when these
take off. This project will hopefully sensibility some people for the issue, show
them that and how it can be addressed, and it will hopefully only be the first
step in a long line of similar projects great enough to make this one become
forgotten.

33

8 License

This version of the specification is licensed under OWFa 1.0 by phseiff (contact:
phseiff@phseiff.com).

34

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
mailto:phseiff@phseiff.com

	Abstract
	Requirements
	Design Decisions
	Standard
	Template Language
	Pronoun Description Data
	Pronoun Renderer
	 gender*render Renderer specification
	Implementation guidelines

	Specification developement
	Exemplary Implementation
	Outlook
	License

