
github-flavored-markdown-to-html
Convert	Markdown	to	html	via	python	or	with	a	command	line	interface.	Uses	Githubs	online	Markdown-to-html-API	as	well	as	Githubs
Markdown-CSS.	Requires	internet	connection	to	work.

This	module	is	intended	to	be	used	for	the	creation	of	static	pages	from	markdown	files,	for	example	in	conjunction	with	a	static	website	builder
or	github	actions	if	you	host	on	Github,	but	can	be	very	well	used	for	any	other	purpose.	It	also	allows	you	to	convert	the	html	files	to	pdf	on	the
fly.

Advantages	include:

Lets	you	specify	the	markdown	to	convert	as	a	string,	as	a	repository	path,	as	a	local	file	name	or	as	a	hyperlink.
Pulls	any	images	referenced	in	the	markdown	files	from	the	web/	your	local	storage	and	places	them	in	a	directory	relative	to	your	website
root,	so	you	can	host	it	all	locally	without	relying	on	third-party-websites.
Creates	all	links	as	root-relative	hyperlinks	and	lets	you	specify	the	root	directory	as	well	as	the	locations	for	css	and	images,	but	uses	smart
standard	values	for	everything.
Supports	inline	LaTeX-formulas	(use	$-formula-$	to	use	them),	which	GitHub	usually	doesn't	(this	is	done	using	the	Codecogs	EqnEditor).
Supports	exporting	as	pdf	with	or	without	Github	styling,	using	the	pdfkit	python	module	(if	it	is	installed).
Tested	and	optimized	to	look	good	when	using	Darkreader	(the	.js-module,	not	nessesarily	the	browser	extension.	This	means	that	formulas
are	displayed	with	a	light	text	when	in	darkmode,	amongst	other	things).

Installation
Use	pip3	install	gh_md_to_html	(might	require	sudo	on	Linux)	and	optionally	pip3	install	pdfkit	(if	you	want	to	use	the	optional	pdf
features)	to	install	it.

Usage
If	you	want	to	access	the	interface	with	your	command	line,	you	can	just	supply	gh_markdown_to_html	with	the	arguments	documented	in	th	help
text	(accessible	with	gh_markdown_to_html	-h	and	shown	below.)

If	you	want	to	access	the	interface	via	python,	you	can	use

import	gh_md_to_html

and	then	use	gh_md_to_html.main()	with	the	same	arguments	(and	default	values)	you	would	supply	to	the	command	line	interface.

Documentation

All	arguments	and	how	they	work	are	documented	in	the	help	text	of	the	program,	which	looks	like	this:

usage:	__init__.py	[-h]	[-t	{file,repo,web,string}]	[-w	WEBSITE_ROOT]
																			[-d	DESTINATION]	[-i	IMAGE_PATHS]	[-c	CSS_PATHS]
																			[-n	OUTPUT_NAME]	[-p	OUTPUT_PDF]	[-s	STYLE_PDF]	[-f	FOOTER]
																			[-m	MATH]	[-r	FORMULAS_SUPPORTING_DARKREADER]
																			MD-origin

Convert	markdown	to	HTML	using	the	GitHub	API	and	some	additional	tweaks	with
python.

positional	arguments:
		MD-origin													Where	to	find	the	markdown	file	that	should	be
																								converted	to	html

optional	arguments:
		-h,	--help												show	this	help	message	and	exit
		-t	{file,repo,web,string},	--origin-type	{file,repo,web,string}
																								In	what	way	the	MD-origin-argument	describes	the	origin
																								of	the	markdown	file	to	use.	Defaults	to	file.	The
																								options	mean:	
																								*	file:	takes	a	relative	or	absolute	path	to	a	file
																								*	repo:	takes	a	path	to	a	markdown-file	in	a	github
																								repository,	such	as	<user_name>/<repo_name>/<branch-
																								name>/<path_to_markdown>.md	
																								*	web:	takes	an	url	to	a	markdown	file
																								*	string:	takes	a	string	containing	the	files	content
		-w	WEBSITE_ROOT,	--website-root	WEBSITE_ROOT
																								Only	relevant	if	you	are	creating	the	html	for	a	static
																								website	which	you	manage	using	git	or	something	similar.
																								--html-root	is	the	directory	from	which	you	serve	your
																								website	(which	is	needed	to	correctly	generate	the	links
																								within	the	generated	html,	such	as	the	link	pointing	to
																								the	css,	since	they	are	all	root-	relative),	and	can	be
																								a	relative	as	well	as	an	absolute	path.	Defaults	to	the
																								directory	you	called	this	script	from.	If	you	intent	to
																								view	the	html	file	on	your	laptop	instead	of	hosting	it
																								on	a	static	site,	website-root	should	be	a	dot	and
																								destination	not	set.	The	reason	the	generated	html	files
																								use	root-relative	links	to	embed	images	is	that	on	many
																								static	websites,	https://foo/bar/index.html	can	be
																								accessed	via	https://foo/bar,	in	which	case	relative
																								(non-root-	relative)	links	in	index.html	will	be
																								interpreted	as	relative	to	foo	instead	of	bar,	which	can
																								cause	images	not	to	load.
		-d	DESTINATION,	--destination	DESTINATION

https://developer.github.com/v3/markdown/
https://github.githubassets.com/assets/gist-embed-52b3348036dbd45f4ab76e44de42ebc4.css
https://latex.codecogs.com/
https://pypi.org/project/pdfkit/
https://github.com/darkreader/darkreader

																								Where	to	store	the	generated	html.	This	path	is	relative
																								to	--website-root.	Defaults	to	"".
		-i	IMAGE_PATHS,	--image-paths	IMAGE_PATHS
																								Where	to	store	the	images	needed	or	generated	for	the
																								html.	This	path	is	relative	to	website-root.	Defaults	to
																								the	"images"-folder	within	the	destination	folder.
		-c	CSS_PATHS,	--css-paths	CSS_PATHS
																								Where	to	store	the	css	needed	for	the	html	(as	a	path
																								relative	to	the	website	root).	Defaults	to	the
																								"<WEBSITE_ROOT>/github-markdown-css"-folder.
		-n	OUTPUT_NAME,	--output-name	OUTPUT_NAME
																								What	the	generated	html	file	should	be	called	like.	Use
																								<name>	within	the	value	to	refer	to	the	name	of	the
																								markdown	file	that	is	being	converted	(if	you	don't	use
																								"-t	string").	You	can	use	'-n	print'	to	print	the	file
																								(if	using	the	command	line	interface)	or	return	it	(if
																								using	the	python	module),	both	without	saving	it.
		-p	OUTPUT_PDF,	--output-pdf	OUTPUT_PDF
																								If	set,	the	file	will	also	be	saved	as	a	pdf	file	in	the
																								same	directory	as	the	html	file,	using	pdfkit,	a	python
																								library	which	will	also	need	to	be	installed	for	this	to
																								work.	You	may	use	the	<name>	variable	in	this	value	like
																								you	did	in	--output-name.
		-s	STYLE_PDF,	--style-pdf	STYLE_PDF
																								If	set	to	false,	the	generated	pdf	(only	relevant	if	you
																								use	--output-pdf)	will	not	be	styled	using	github's	css.
		-f	FOOTER,	--footer	FOOTER
																								An	optional	piece	of	html	which	will	be	included	as	a
																								footer	where	the	'hosted	with	<3	by	github'-footer
																								usually	is.	Defaults	to	None,	meaning	that	the	section
																								usually	containing	said	footer	will	be	omitted
																								altogether.
		-m	MATH,	--math	MATH		If	set	to	True,	which	is	the	default,	LaTeX-formulas
																								using	$formula$-notation	will	be	rendered.
		-r	FORMULAS_SUPPORTING_DARKREADER,	--formulas-supporting-darkreader	FORMULAS_SUPPORTING_DARKREADER
																								If	set	to	true,	formulas	will	be	shown	light	if	the
																								darkreader	.js	library	is	included	in	the	html	and	the
																								user	prefers	darkmode.	This	is	checked	by	looking	for	a
																								script	embedded	from	a	src	ending	with	"darkreader.js"
																								and	by	checking	the	prefers-color-	scheme	option	in	the
																								browser.	You	can	also	supply	any	other	script	src	to
																								look	for.	Please	note	that	this	won't	have	any	effect
																								unless	you	inject	the	darkreader	.js	library	into	the
																								generated	html;	doing	so	is	not	included	in	this	module.

As	mentioned	above,	any	image	referenced	in	the	markdown	file	is	stored	locally	and	referenced	using	a	root-relative	hyperlinks	in	the	generated
html.	How	the	converter	guesses	the	location	of	the	image	is	shown	in	the	following	table,	with	the	type	of	imagelink	noted	on	the	top	and	the
type	of	input	markdown	noted	on	the	left:

https://
or

http://

abs.
filepath rel.	filepath starting	with	/	(e.g.	/image.png) not	starting	with	/	(e.g.	image.png)

-t	file from	the
address abs.	filepath

rel.	filepath
(from	where
the	.md-file
lies)

- -

username/repo/dir/file.md
-t	repo

from	the
address - - username/repo/imagedir/image.png username/repo/dir/imagedir/image.png

-t	string from	the
address

abs.filepath,
but	needs

confirmation
for	security
reasons

rel.	filepath
(to	where
the	tool	is
called	from),
but	needs
confirmation
for	security
reasons

- -

https://foo.com/bar/baz.md
-t	web

from	the
address - - https://foo.com/image.png https://foo.com/bar/image.png

Demonstration
I	added	the	following	demonstration,	whose	files	where	created	from	the	root	directory	of	this	projects	directory,	which	relates	to	the	root
directory	of	the	site	I	am	hosting	them	on:

generated	with: view: demonstrates	what: notes:
python3	github-flavored-markdown-to-html/init.py
github-flavored-markdown-to-html/README.md	-d
github-flavored-markdown-to-html/docs	-c	github-
flavored-markdown-to-html/docs/css	-f	"test	footer
<3"

here html	(+footer)

python3	github-flavored-markdown-to-html/init.py
github-flavored-markdown-to-html/README.md	-n
README-darkmode.html	-d	github-flavored-
markdown-to-html/docs	-c	github-flavored-
markdown-to-html/docs/css	-r	true

here

html	(without	a	footer)	and
that	the	html	supports
embedding	the	darkreader	.js
library	without	showing	dark
formulas	on	dark	ground	etc.

I	injected	the	following	into	the	html:	<script
type="text/javascript"
src="https://phseiff.com/darkreader/darkreader.js">
</script>DarkReader.setFetchMethod(window.fetch);
DarkReader.auto({brightness:	100,contrast:	90,	sepia:

10});</script>

https://phseiff.com/github-flavored-markdown-to-html/README.html
https://phseiff.com/github-flavored-markdown-to-html/README-darkreader.html
https://phseiff.com/darkreader/darkreader.js%22%3E%3C/script%3EDarkReader.setFetchMethod(window.fetch)

10});</script>
python3	github-flavored-markdown-to-html/init.py
github-flavored-markdown-to-html/README.md	-d
github-flavored-markdown-to-html/docs	-n	print	-c
github-flavored-markdown-to-html/docs/css	-p
README.pdf

here Converting	to	pdf.

python3	github-flavored-markdown-to-html/init.py
github-flavored-markdown-to-html/README.md	-d
github-flavored-markdown-to-html/docs	-n	print	-c
github-flavored-markdown-to-html/docs/css	-p
README-unstyled.pdf	-s	false

here Converting	to	pdf	without
styling.

I	also	added	a	 	here	()	to	demonstrate	the	formula	rendering	(which	you	won't	see	when	viewing	this	README	directly	on

github	since,	like	I	said,	github	usually	doesn't	support	it.)

Some	Notes
In	case	you	are	not	happy	with	the	margin	left	and	right	of	the	text,	you	can	manually	adjust	it	by	modifying	the	margin-values	hardcoded	in
prototype.html	in	this	repository.

DISCLAIMER:	This	module	is	neither	written	by	Github,	nor	is	it	endorsed	with	Github,	supported	by	Github,	powered	by	Github	or	affiliated
with	Github.	It	only	uses	a	public	API	provided	by	Github	as	well	as	a	.css-file	licensed	by	Github	under	the	MIT	license.

https://phseiff.com/github-flavored-markdown-to-html/README.pdf
https://phseiff.com/github-flavored-markdown-to-html/README-unstyled.pdf

