
github-flavored-markdown-to-html
Convert	Markdown	to	html	via	python	or	with	a	command	line	interface.	Uses	Githubs	online	Markdown-to-html-API	as
well	as	Githubs	Markdown-CSS.	Requires	internet	connection	to	work.

This	module	is	intended	to	be	used	for	the	creation	of	static	pages	from	markdown	files,	for	example	in	conjunction	with
a	static	website	builder	or	github	actions	if	you	host	on	Github,	but	can	be	very	well	used	for	any	other	purpose.	It	also
allows	you	to	convert	the	html	files	to	pdf	on	the	fly.

Advantages	include:

Lets	you	specify	the	markdown	to	convert	as	a	string,	as	a	repository	path,	as	a	local	file	name	or	as	a	hyperlink.
Pulls	any	images	referenced	in	the	markdown	files	from	the	web/	your	local	storage	and	places	them	in	a	directory
relative	to	your	website	root,	so	you	can	host	it	all	locally	without	relying	on	third-party-websites.
Creates	all	links	as	root-relative	hyperlinks	and	lets	you	specify	the	root	directory	as	well	as	the	locations	for	css
and	images,	but	uses	smart	standard	values	for	everything.
Supports	inline	LaTeX-formulas	(use	 $ -formula- $ 	to	use	them),	which	GitHub	usually	doesn't	(this	is	done	using
the	Codecogs	EqnEditor).
Supports	exporting	as	pdf	with	or	without	Github	styling,	using	the	pdfkit	python	module	(if	it	is	installed).
Tested	and	optimized	to	look	good	when	using	Darkreader	(the	.js-module,	not	nessesarily	the	browser	extension.
This	means	that	formulas	are	displayed	with	a	light	text	when	in	darkmode,	amongst	other	things).

Installation

Use	 pip3	install	gh_md_to_html 	(might	require	 sudo 	on	Linux)	and	optionally	 pip3	install	pdfkit 	(if	you	want
to	use	the	optional	pdf	features)	to	install	it.

Usage

If	you	want	to	access	the	interface	with	your	command	line,	you	can	just	supply	 gh_markdown_to_html 	with	the
arguments	documented	in	th	help	text	(accessible	with	 gh_markdown_to_html	-h 	and	shown	below.)

If	you	want	to	access	the	interface	via	python,	you	can	use

import	gh_md_to_html

and	then	use	 gh_md_to_html.main() 	with	the	same	arguments	(and	default	values)	you	would	supply	to	the
command	line	interface.

Documentation

All	arguments	and	how	they	work	are	documented	in	the	help	text	of	the	program,	which	looks	like	this:

usage:	__init__.py	[-h]	[-t	{file,repo,web,string}]	[-w	WEBSITE_ROOT]

																			[-d	DESTINATION]	[-i	IMAGE_PATHS]	[-c	CSS_PATHS]

																			[-n	OUTPUT_NAME]	[-p	OUTPUT_PDF]	[-s	STYLE_PDF]	[-f	FOOTER]

																			[-m	MATH]	[-r	FORMULAS_SUPPORTING_DARKREADER]

																			MD-origin

Convert	markdown	to	HTML	using	the	GitHub	API	and	some	additional	tweaks	with

python.

positional	arguments:

		MD-origin													Where	to	find	the	markdown	file	that	should	be

																								converted	to	html

https://developer.github.com/v3/markdown/
https://github.githubassets.com/assets/gist-embed-52b3348036dbd45f4ab76e44de42ebc4.css
https://latex.codecogs.com/
https://pypi.org/project/pdfkit/
https://github.com/darkreader/darkreader


optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		-t	{file,repo,web,string},	--origin-type	{file,repo,web,string}

																								In	what	way	the	MD-origin-argument	describes	the	origin

																								of	the	markdown	file	to	use.	Defaults	to	file.	The

																								options	mean:	

																								*	file:	takes	a	relative	or	absolute	path	to	a	file

																								*	repo:	takes	a	path	to	a	markdown-file	in	a	github

																								repository,	such	as	<user_name>/<repo_name>/<branch-

																								name>/<path_to_markdown>.md	

																								*	web:	takes	an	url	to	a	markdown	file

																								*	string:	takes	a	string	containing	the	files	content

		-w	WEBSITE_ROOT,	--website-root	WEBSITE_ROOT

																								Only	relevant	if	you	are	creating	the	html	for	a	static

																								website	which	you	manage	using	git	or	something	similar.

																								--html-root	is	the	directory	from	which	you	serve	your

																								website	(which	is	needed	to	correctly	generate	the	links

																								within	the	generated	html,	such	as	the	link	pointing	to

																								the	css,	since	they	are	all	root-	relative),	and	can	be

																								a	relative	as	well	as	an	absolute	path.	Defaults	to	the

																								directory	you	called	this	script	from.	If	you	intent	to

																								view	the	html	file	on	your	laptop	instead	of	hosting	it

																								on	a	static	site,	website-root	should	be	a	dot	and

																								destination	not	set.	The	reason	the	generated	html	files

																								use	root-relative	links	to	embed	images	is	that	on	many

																								static	websites,	https://foo/bar/index.html	can	be

																								accessed	via	https://foo/bar,	in	which	case	relative

																								(non-root-	relative)	links	in	index.html	will	be

																								interpreted	as	relative	to	foo	instead	of	bar,	which	can

																								cause	images	not	to	load.

		-d	DESTINATION,	--destination	DESTINATION

																								Where	to	store	the	generated	html.	This	path	is	relative

																								to	--website-root.	Defaults	to	"".

		-i	IMAGE_PATHS,	--image-paths	IMAGE_PATHS

																								Where	to	store	the	images	needed	or	generated	for	the

																								html.	This	path	is	relative	to	website-root.	Defaults	to

																								the	"images"-folder	within	the	destination	folder.

		-c	CSS_PATHS,	--css-paths	CSS_PATHS

																								Where	to	store	the	css	needed	for	the	html	(as	a	path

																								relative	to	the	website	root).	Defaults	to	the

																								"<WEBSITE_ROOT>/github-markdown-css"-folder.

		-n	OUTPUT_NAME,	--output-name	OUTPUT_NAME

																								What	the	generated	html	file	should	be	called	like.	Use

																								<name>	within	the	value	to	refer	to	the	name	of	the

																								markdown	file	that	is	being	converted	(if	you	don't	use

																								"-t	string").	You	can	use	'-n	print'	to	print	the	file

																								(if	using	the	command	line	interface)	or	return	it	(if

																								using	the	python	module),	both	without	saving	it.

		-p	OUTPUT_PDF,	--output-pdf	OUTPUT_PDF

																								If	set,	the	file	will	also	be	saved	as	a	pdf	file	in	the

																								same	directory	as	the	html	file,	using	pdfkit,	a	python

																								library	which	will	also	need	to	be	installed	for	this	to

																								work.	You	may	use	the	<name>	variable	in	this	value	like

																								you	did	in	--output-name.

		-s	STYLE_PDF,	--style-pdf	STYLE_PDF

																								If	set	to	false,	the	generated	pdf	(only	relevant	if	you

																								use	--output-pdf)	will	not	be	styled	using	github's	css.

		-f	FOOTER,	--footer	FOOTER

																								An	optional	piece	of	html	which	will	be	included	as	a

																								footer	where	the	'hosted	with	<3	by	github'-footer

																								usually	is.	Defaults	to	None,	meaning	that	the	section

																								usually	containing	said	footer	will	be	omitted

																								altogether.

		-m	MATH,	--math	MATH		If	set	to	True,	which	is	the	default,	LaTeX-formulas

																								using	$formula$-notation	will	be	rendered.

		-r	FORMULAS_SUPPORTING_DARKREADER,	--formulas-supporting-darkreader	FORMULAS_SUPPORTING_DARKREADER

																								If	set	to	true,	formulas	will	be	shown	light	if	the

																								darkreader	.js	library	is	included	in	the	html	and	the



																								user	prefers	darkmode.	This	is	checked	by	looking	for	a

																								script	embedded	from	a	src	ending	with	"darkreader.js"

																								and	by	checking	the	prefers-color-	scheme	option	in	the

																								browser.	You	can	also	supply	any	other	script	src	to

																								look	for.	Please	note	that	this	won't	have	any	effect

																								unless	you	inject	the	darkreader	.js	library	into	the

																								generated	html;	doing	so	is	not	included	in	this	module.

As	mentioned	above,	any	image	referenced	in	the	markdown	file	is	stored	locally	and	referenced	using	a	root-relative
hyperlinks	in	the	generated	html.	How	the	converter	guesses	the	location	of	the	image	is	shown	in	the	following	table,
with	the	type	of	imagelink	noted	on	the	top	and	the	type	of	input	markdown	noted	on	the	left:

https://
or	 http:/

/

abs.
filepath

rel.	filepath starting	with	 / 	(e.g.	 /image.png

-t	file
from	the
address

abs.	filepath

rel.	filepath
(from	where
the	 .md -
file	lies)

-

username/repo/dir/file.md	-t	repo
from	the
address

- - username/repo/imagedir/image.png

-t	string
from	the
address

abs.filepath,
but	needs
confirmation
for	security
reasons

rel.	filepath
(to	where
the	tool	is
called
from),	but
needs
confirmation
for	security
reasons

-

https://foo.com/bar/baz.md	-t	web
from	the
address

- - https://foo.com/image.png

Demonstration

I	added	the	following	demonstration,	whose	files	where	created	from	the	root	directory	of	this	projects	directory,	which
relates	to	the	root	directory	of	the	site	I	am	hosting	them	on:

generated	with: view:
demonstrates

what: notes:

python3	github-flavored-
markdown-to-html/init.py
github-flavored-markdown-
to-html/README.md	-d
github-flavored-markdown-
to-html/docs	-c	github-
flavored-markdown-to-
html/docs/css	-f	"test	footer
<3"

here html	(+footer)

python3	github-flavored-
markdown-to-html/init.py
github-flavored-markdown-

html	(without	a
footer)	and	that
the	html
supports

I	injected	the	following	into	the	html:	<script
type="text/javascript"

https://phseiff.com/github-flavored-markdown-to-html/README.html


to-html/README.md	-n
README-darkmode.html	-
d	github-flavored-
markdown-to-html/docs	-c
github-flavored-markdown-
to-html/docs/css	-r	true

here embedding	the
darkreader	.js
library	without
showing	dark
formulas	on	dark
ground	etc.

src="https://phseiff.com/darkreader/darkreader.js">
</script>DarkReader.setFetchMethod(window.fetch);
DarkReader.auto({brightness:	100,contrast:	90,
sepia:	10});</script>

python3	github-flavored-
markdown-to-html/init.py
github-flavored-markdown-
to-html/README.md	-d
github-flavored-markdown-
to-html/docs	-n	print	-c
github-flavored-markdown-
to-html/docs/css	-p
README.pdf

here
Converting	to
pdf.

python3	github-flavored-
markdown-to-html/init.py
github-flavored-markdown-
to-html/README.md	-d
github-flavored-markdown-
to-html/docs	-n	print	-c
github-flavored-markdown-
to-html/docs/css	-p
README-unstyled.pdf	-s
false

here
Converting	to
pdf	without
styling.

I	also	added	a	 	here	(	 )	to	demonstrate	the	formula	rendering	(which	you	won't	see	when	viewing	this

README	directly	on	github	since,	like	I	said,	github	usually	doesn't	support	it.)

Some	Notes

In	case	you	are	not	happy	with	the	margin	left	and	right	of	the	text,	you	can	manually	adjust	it	by	modifying	the	margin-
values	hardcoded	in	prototype.html	in	this	repository.

DISCLAIMER:	This	module	is	neither	written	by	Github,	nor	is	it	endorsed	with	Github,	supported	by	Github,	powered
by	Github	or	affiliated	with	Github.	It	only	uses	a	public	API	provided	by	Github	as	well	as	a	.css-file	licensed	by	Github
under	the	MIT	license.

https://phseiff.com/github-flavored-markdown-to-html/README-darkreader.html
https://phseiff.com/darkreader/darkreader.js%22%3E%3C/script%3EDarkReader.setFetchMethod(window.fetch)
https://phseiff.com/github-flavored-markdown-to-html/README.pdf
https://phseiff.com/github-flavored-markdown-to-html/README-unstyled.pdf

